Bayesian mapping of quantitative trait loci under the identity-by-descent-based variance component model.
نویسندگان
چکیده
Variance component analysis of quantitative trait loci (QTL) is an important strategy of genetic mapping for complex traits in humans. The method is robust because it can handle an arbitrary number of alleles with arbitrary modes of gene actions. The variance component method is usually implemented using the proportion of alleles with identity-by-descent (IBD) shared by relatives. As a result, information about marker linkage phases in the parents is not required. The method has been studied extensively under either the maximum-likelihood framework or the sib-pair regression paradigm. However, virtually all investigations are limited to normally distributed traits under a single QTL model. In this study, we develop a Bayes method to map multiple QTL. We also extend the Bayesian mapping procedure to identify QTL responsible for the variation of complex binary diseases in humans under a threshold model. The method can also treat the number of QTL as a parameter and infer its posterior distribution. We use the reversible jump Markov chain Monte Carlo method to infer the posterior distributions of parameters of interest. The Bayesian mapping procedure ends with an estimation of the joint posterior distribution of the number of QTL and the locations and variances of the identified QTL. Utilities of the method are demonstrated using a simulated population consisting of multiple full-sib families.
منابع مشابه
Approximating identity-by-descent matrices using multiple haplotype configurations on pedigrees.
Identity-by-descent (IBD) matrix calculation is an important step in quantitative trait loci (QTL) analysis using variance component models. To calculate IBD matrices efficiently for large pedigrees with large numbers of loci, an approximation method based on the reconstruction of haplotype configurations for the pedigrees is proposed. The method uses a subset of haplotype configurations with h...
متن کاملA random model approach to interval mapping of quantitative trait loci.
Mapping quantitative trait loci in outbred populations is important because many populations of organisms are noninbred. Unfortunately, information about the genetic architecture of the trait may not be available in outbred populations. Thus, the allelic effects of genes can not be estimated with ease. In addition, under linkage equilibrium, marker genotypes provide no information about the gen...
متن کاملIteratively reweighted LASSO for mapping multiple quantitative trait loci
The iteratively reweighted least square (IRLS) method is mostly identical to maximum likelihood (ML) method in terms of parameter estimation and power of quantitative trait locus (QTL) detection. But the IRLS is greatly superior to ML in terms of computing speed and the robustness of parameter estimation. In conjunction with the priors of parameters, ML can analyze multiple QTL model based on B...
متن کاملQuantitative Trait Loci for some of Behavior and Performance Traits on Chromosome 4 of Japanese Quail
The current study was conducted to identify the quantitative trait locus (QTL) for the body weight at age 1, 7, 14, 21 and 28 days and daily gain at age 0-1, 1-2, 2-3 and 3-4 weeks, slighter carcass weight and tonic immobility in Japanese quail. Two divergently lines of wild and white Japanese quail which maintained in the Animal Science Research Center of the Shahid Bahonar University of Kerma...
متن کاملSimultaneous fine mapping of multiple closely linked quantitative trait Loci using combined linkage disequilibrium and linkage with a general pedigree.
Within a small region (e.g., <10 cM), there can be multiple quantitative trait loci (QTL) underlying phenotypes of a trait. Simultaneous fine mapping of closely linked QTL needs an efficient tool to remove confounded shade effects among QTL within such a small region. We propose a variance component method using combined linkage disequilibrium (LD) and linkage information and a reversible jump ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 156 1 شماره
صفحات -
تاریخ انتشار 2000